IGCSE Chemistry (4335) - Higher Tier

1. (a) (under)ground / mine / volcanoes NOT ores crude oil
(b) air NOT oxygen
water
(c) (i) sulphur trioxide
(ii) range or specific temperature within $350^{\circ} \mathrm{C}-500^{\circ} \mathrm{C} /$
high temperature
range or specific pressure within 1-5 atm /
slightly increased (NOT high) pressure
$\mathrm{V}_{2} \mathrm{O}_{5}$ / vanadium (V) oxide
(2)

Total 7 marks
2. (a) potassium manganate(VII) / manganese(IV) oxide
purple / black (grey)
(b) denser than air
(c) green / yellow-green
(d) (damp) litmus (paper) / starch iodide paper bleaches / white / black
(e) (i) sodium chloride
(ii) electrolysis
(iii) bleach / treating OR sterilising water / manufacture of HCl

Total 9 marks

3. (a) (i) only single bonds / no more atoms can be added
(ii) (they contain) carbon and hydrogen only
(b) (i) $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$
(ii) alkanes
(iii) similar chemical properties gradation in physical properties neighbouring members differ by CH_{2} any two ,
(c) (compounds with) the same molecular formula
(but) different structures / structural formula
4. (a) Na^{+}
(b) 0^{2-}
(c) Cl^{-}
(d) Mg
(e) $\mathrm{Mg}^{2+}, \mathrm{Na}^{+}$and O^{2-}
(f) MgO
higher charges on the ions / ions have double charges
5. (a) (i) enthalpy change / energy change / heat change
(ii) reaction is exothermic / heat is given out
(b) covalent
two / pair of
(1) shared electrons
(c) $\mathrm{H} \times \mathrm{H}$
(d) forces between molecules (determine boiling point) (these are) weak
(e) colourless
colourless
(f) (i) silver nitrate
(ii) white precipitate
(iii) AgNO_{3} (on left)

AgCl and HNO_{3} (on right)
6. (a) (i) solid
(ii) 25 to $100^{\circ} \mathrm{C}$
(b) (i) -1
(ii) each gain one electron (1)
to get full outer energy level / shell
(c) fluorine
(d) (i) $\mathrm{Cl}_{2}+2 \mathrm{KBr} \rightarrow 2 \mathrm{KCl}+\mathrm{Br}_{2}$ reagents and products
(1)
balancing
(1)
(ii) solution becomes red / orange / brown / yellow
(e) $\mathrm{K}: \frac{16.4}{39}=0.421 ; \mathrm{Cl}: \frac{30.0}{35.5}=0.845 ; \mathrm{I}: \frac{53.6}{127}=0.422$
simplification of ratio / dividing all by 0.421 i.e. $\mathrm{K}=1 ; \mathrm{Cl}=2 ; \mathrm{I}=1$ correct formula: $\mathrm{KCl}_{2} \mathrm{I}$
7. (a) (i) needs lots of energy / container would melt
(ii) cryolite has a lower melting point OR mixture of aluminium oxide and cryolite (1) has lower melting point
(b) (i) $2 \mathrm{O}^{2-} \rightarrow \mathrm{O}_{2}+4 \mathrm{e}^{-}$(or halved)
(ii) $\mathrm{Al}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}$ species correct
(1) balanced
(c) $\mathrm{O}^{2-} /$ oxide
lost electrons
(d) carbon / graphite (electrode)
reacts with oxygen formed
(1)
makes carbon dioxide / carbon monoxide
(e) (i) regular lattice/ arrangement of positive ions NOT atoms
(ii) electrons mobile / free to move
8. (a) weak acids do not dissociate/ ionise fully $\left.\begin{array}{l}\text { weak acids have higher pH / turn U.I. orange-yellow } \\ \text { weak acids react more slowly }\end{array}\right\}$ any two weak acids react more slowly
ACCEPT reverse arguments for strong acids
(b) (i) 138
(1)
(ii) $2.76 \div 138=0.02$ (moles)
(1)
(iii) volume $=0.02 \div 0.2\left(=0.1 \mathrm{dm}^{3}\right)$
(1)
$=100\left(\mathrm{~cm}^{3}\right)$
(1)
(iv) 44
(1)
(v) $44 \times 0.02=0.88(\mathrm{~g})$
(1)
(vi) $0.02 \times 24=0.48\left(\mathrm{dm}^{3}\right)$
(1)
(c) (i) flame test / description of flame test lilac
(ii) add dilute hydrochloric acid
test gas with acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ / (damp) blue litmus orange to green / goes red
NB If no test, can score last mark by stating SO_{2} produced OR
add barium chloride
(1)
followed by hydrochloric acid (1) white precipitate which dissolves on adding hydrochloric acid

Total 14 marks
9. (a) (refinery) gases
(b) global warming
(c) (i) high temperature / alumina catalyst
(ii) fractional distillation of crude oil produces more long chain fractions than required
(d) (i) $2640(\mathrm{~kJ} / \mathrm{mol})$
if incorrect, give 1 mark for 4×412 OR 2×496
(ii) $3338(\mathrm{~kJ} / \mathrm{mol})$
if incorrect give 1 mark for 2×743 OR 4×463
(iii) $-698(\mathrm{~kJ} / \mathrm{mol}) \mathbf{c q}$ on (i) and (ii)
(e) (i) $2 \mathrm{CH}_{4}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}+4 \mathrm{H}_{2} \mathrm{O}$ (accept equation to produce C) all reagents and products correct $=1$ balancing =1
(ii) CO poisonous / toxic
reduces ability of blood to carry oxygen / correct reference to haemoglobin
10. (a) (i) natural gas / oil NOT methane
(ii) $\mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{4} \rightarrow \mathrm{CO}+3 \mathrm{H}_{2}$ correct species
balancing
ALLOW correct equation producing hydrogen from cracking
(iii) iron
(b) A: oxygen / O_{2}

B: water / $\mathrm{H}_{2} \mathrm{O}$
(c) (i) reference to the arrow
(ii) forward and reverse reactions take place
(1) same rate / concentrations do not change
(iii) more / increases
(iv) less / decreases
(d) (i) acid rain
(1)
(ii) kills trees
 (2)

Total 14 marks
11. (a) Each C bonded to 4 others (1)
arranged tetrahedrally(1)each C held rigidly in place/ strong bonds need to be broken to(1)deform structure
(b) Each C bonded to 3 others (1)
arranged in layers of hexagons(1)
weak forces between layers/ layers can slide over each other (1)
(c) strong (covalent) bonds (between atoms) (1)
need lots of energy to overcome/ break (1)

