IGCSE Chemistry (4335) - Higher Tier

1.	(a)		1) 1)
	(b)		1) 1)
	(c)	 (ii) range or specific temperature within 350°C - 500°C / high temperature range or specific pressure within 1 - 5 atm / slightly increased (NOT high) pressure 	1) 2)
		Total 7 mark	(S
2.	(a)	potassium manganate(VII) / manganese(IV) oxide (1 purple / black (grey) (1	1) 1)
	(b)	denser than air (1	1)
	(c)	green / yellow-green (1	1)
	(d)	(damp) litmus (paper)/ starch iodide paper(1bleaches / white/ black(1	1) 1)
	(e)	(ii) electrolysis (1	1) 1) 1)
		Total 9 mark	٢S
3.	(a)		1) 1)
	(b)	 (ii) alkanes (iii) similar chemical properties gradation in physical properties any two 	1) 1) 2)
	(c)		1) 1)
		Total 8 mark	<u> </u>

Total 8 marks

4.	(a)	Na^+		(1)	
	(b)	0 ²⁻		(1)	
	(c)	Cl	(1)		
	(d)	Mg	(1)		
	(e)	Mg ²⁺ , N	(1)		
	(f)	MgO(1)higher charges on the ions / ions have double charges(1)			
				Total 7 marks	
5.	(a)	(i) (ii)	enthalpy change / energy change / heat change reaction is exothermic / heat is given out	(1) (1)	
	(b)	covale two / shared	(1) (1) (1)		
	(c)	H ×	Н	(1)	
	(d)		between molecules (determine boiling point) are) weak	(1) (1)	
	(e)	colour colour	(1) (1)		
	(f)	(i) (ii) (iii)	silver nitrate white precipitate AgNO3 (on left) AgCI and HNO3 (on right)	(1) (1) (1) (1)	

Total 14 marks

6.	(a)	(i) (ii)	solid 25 to 100 °C	(1) (1)
	(b)	(i) (ii)	-1 each gain one electron to get full outer energy level / shell	(1) (1) (1)
	(c)	fluor	ine	(1)
	(d)	(i)	$CI_2 + 2KBr \rightarrow 2KCI + Br_2$ reagents and products balancing	(1) (1)
		(ii)	solution becomes red / orange / brown / yellow	(1)
	(e)	$K: \frac{16.4}{39}$	$E = 0.421$; CI: $\frac{30.0}{355} = 0.845$; I: $\frac{53.6}{127} = 0.422$	(1)
			lification of ratio / dividing all by 0.421 i.e. K =1; CI = 2; I = 1 ect formula: KCI_2I	(1) (1)
			Total 12	marks
7.	(a)	(i) (ii)	needs lots of energy / container would melt cryolite has a lower melting point aluminium oxide dissolves in molten cryolite OR	(1) (1) (1)
			mixture of aluminium oxide and cryolite has lower melting point	(1) (1)
	(b)	(i)	$20^{2} \rightarrow 0_2 + 4e^-$ (or halved)	(1)
		(ii)	$AI^{3+} + 3e^- \rightarrow AI$ species correct balanced	(1) (1)
	(c)	O ²⁻ / oxide lost electrons		
	(d)	carbon / graphite (electrode) reacts with oxygen formed makes carbon dioxide / carbon monoxide		
	(e)	(i)	regular lattice/arrangement of positive ions NOT atoms delocalised/sea of electrons	(1) (1)
		(ii)	electrons mobile / free to move	(1)
			Total 14	marks

8.	(a)	weak weak	acids do not dissociate/ionise fully acids have higher pH / turn U.I. orange-yellow acids react more slowly PT reverse arguments for strong acids	(2)
	(b)	(i) (ii) (iii) (iv) (v) (v) (vi)	138 2.76 \div 138 = 0.02 (moles) volume = 0.02 \div 0.2 (= 0.1dm ³) = 100 (cm ³) 44 44 x 0.02 = 0.88 (g) 0.02 x 24 = 0.48 (dm ³)	(1) (1) (1) (1) (1) (1) (1)
	(c)	(i) (ii)	flame test / description of flame test lilac add dilute hydrochloric acid test gas with acidified K ₂ Cr ₂ O ₇ / (damp) blue litmus orange to green / goes red NB If no test, can score last mark by stating SO ₂ produced OR add barium chloride followed by hydrochloric acid white precipitate which dissolves on adding hydrochloric acid	 (1) (1) (1) (1) (1) (1) (1) (1)
			Total 14 m	arks
0				
9.	(a)	(refin	ery) gases	(1)
9.	(a) (b)		ery) gases I warming	(1) (1)
9.				
9.	(b)	globa (i) (ii)	l warming high temperature / alumina catalyst fractional distillation of crude oil produces more long chain	(1) (1)
9.	(b) (c)	globa (i) (ii) (i) (ii)	I warming high temperature / alumina catalyst fractional distillation of crude oil produces more long chain fractions than required 2640 (kJ/mol) if incorrect, give 1 mark for 4 x 412 OR 2 x 496 3338 (kJ/mol) if incorrect give 1 mark for 2 x 743 OR 4 x 463	 (1) (1) (1) (2) (2) (1) (1) (1) (1) (1) (1)

Total 13 marks

10.	(a)	(i) (ii)	natural gas / oil NOT methane H ₂ O + CH ₄ \rightarrow CO + 3H ₂	(1)
		(11)	correct species balancing	(1) (1)
		(iii)	ALLOW correct equation producing hydrogen from cracking iron	(1)
	(b)	A: oxygen / O_2 B: water / H_2O		
	(c)	(i) (ii)	reference to the arrow forward and reverse reactions take place same rate / concentrations do not change	(1) (1) (1)
		(iii) (iv)	more / increases less / decreases	(1) (1)
	(d)	(i) (ii)	acid rain kills trees kills fish <i>any two</i>	(1)
			damages buildings	(2)
			Total 14	l marks
11.	(a)	Each C bonded to 4 others arranged tetrahedrally each C held rigidly in place/strong bonds need to be broken to deform structure		
	(b)	Each C bonded to 3 others arranged in layers of hexagons weak forces between layers/layers can slide over each other		

(c) strong (covalent) bonds (between atoms)(1)need lots of energy to overcome/break(1)

Total 8 marks

PAPER TOTAL 120 MARKS